446 research outputs found

    Akns Hierarchy, Self-Similarity, String Equations and the Grassmannian

    Get PDF
    In this paper the Galilean, scaling and translational self--similarity conditions for the AKNS hierarchy are analysed geometrically in terms of the infinite dimensional Grassmannian. The string equations found recently by non--scaling limit analysis of the one--matrix model are shown to correspond to the Galilean self--similarity condition for this hierarchy. We describe, in terms of the initial data for the zero--curvature 1--form of the AKNS hierarchy, the moduli space of these self--similar solutions in the Sato Grassmannian. As a byproduct we characterize the points in the Segal--Wilson Grassmannian corresponding to the Sachs rational solutions of the AKNS equation and to the Nakamura--Hirota rational solutions of the NLS equation. An explicit 1--parameter family of Galilean self--similar solutions of the AKNS equation and the associated solution to the NLS equation is determined.Comment: 25 pages in AMS-LaTe

    Automatic learning of gait signatures for people identification

    Get PDF
    This work targets people identification in video based on the way they walk (i.e. gait). While classical methods typically derive gait signatures from sequences of binary silhouettes, in this work we explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (i.e. optical flow components). We carry out a thorough experimental evaluation of the proposed CNN architecture on the challenging TUM-GAID dataset. The experimental results indicate that using spatio-temporal cuboids of optical flow as input data for CNN allows to obtain state-of-the-art results on the gait task with an image resolution eight times lower than the previously reported results (i.e. 80x60 pixels).Comment: Proof of concept paper. Technical report on the use of ConvNets (CNN) for gait recognition. Data and code: http://www.uco.es/~in1majim/research/cnngaitof.htm

    Additional symmetries and solutions of the dispersionless KP hierarchy

    Get PDF
    The dispersionless KP hierarchy is considered from the point of view of the twistor formalism. A set of explicit additional symmetries is characterized and its action on the solutions of the twistor equations is studied. A method for dealing with the twistor equations by taking advantage of hodograph type equations is proposed. This method is applied for determining the orbits of solutions satisfying reduction constraints of Gelfand--Dikii type under the action of additional symmetries.Comment: 21 page

    String Equations for the Unitary Matrix Model and the Periodic Flag Manifold

    Get PDF
    The periodic flag manifold (in the Sato Grassmannian context) description of the modified Korteweg--de Vries hierarchy is used to analyse the translational and scaling self--similar solutions of this hierarchy. These solutions are characterized by the string equations appearing in the double scaling limit of the symmetric unitary matrix model with boundary terms. The moduli space is a double covering of the moduli space in the Sato Grassmannian for the corresponding self--similar solutions of the Korteweg--de Vries hierarchy, i.e. of stable 2D quantum gravity. The potential modified Korteweg--de Vries hierarchy, which can be described in terms of a line bundle over the periodic flag manifold, and its self--similar solutions corresponds to the symmetric unitary matrix model. Now, the moduli space is in one--to--one correspondence with a subset of codimension one of the moduli space in the Sato Grassmannian corresponding to self--similar solutions of the Korteweg--de Vries hierarchy.Comment: 21 pages in LaTeX-AMSTe

    Non-degenerate solutions of universal Whitham hierarchy

    Full text link
    The notion of non-degenerate solutions for the dispersionless Toda hierarchy is generalized to the universal Whitham hierarchy of genus zero with M+1M+1 marked points. These solutions are characterized by a Riemann-Hilbert problem (generalized string equations) with respect to two-dimensional canonical transformations, and may be thought of as a kind of general solutions of the hierarchy. The Riemann-Hilbert problem contains MM arbitrary functions Ha(z0,za)H_a(z_0,z_a), a=1,...,Ma = 1,...,M, which play the role of generating functions of two-dimensional canonical transformations. The solution of the Riemann-Hilbert problem is described by period maps on the space of (M+1)(M+1)-tuples (zα(p):α=0,1,...,M)(z_\alpha(p) : \alpha = 0,1,...,M) of conformal maps from MM disks of the Riemann sphere and their complements to the Riemann sphere. The period maps are defined by an infinite number of contour integrals that generalize the notion of harmonic moments. The FF-function (free energy) of these solutions is also shown to have a contour integral representation.Comment: latex2e, using amsmath, amssym and amsthm packages, 32 pages, no figur

    Time representation in reinforcement learning models of the basal ganglia

    Get PDF
    Reinforcement learning (RL) models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between RL models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both RL and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired

    On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie

    Get PDF
    A new description of the universal Whitham hierarchy in terms of a factorization problem in the Lie group of canonical transformations is provided. This scheme allows us to give a natural description of dressing transformations, string equations and additional symmetries for the Whitham hierarchy. We show how to dress any given solution and prove that any solution of the hierarchy may be undressed, and therefore comes from a factorization of a canonical transformation. A particulary important function, related to the τ\tau-function, appears as a potential of the hierarchy. We introduce a class of string equations which extends and contains previous classes of string equations considered by Krichever and by Takasaki and Takebe. The scheme is also applied for an convenient derivation of additional symmetries. Moreover, new functional symmetries of the Zakharov extension of the Benney gas equations are given and the action of additional symmetries over the potential in terms of linear PDEs is characterized

    On integration of some classes of (n+1)(n+1) dimensional nonlinear Partial Differential Equations

    Full text link
    The paper represents the method for construction of the families of particular solutions to some new classes of (n+1)(n+1) dimensional nonlinear Partial Differential Equations (PDE). Method is based on the specific link between algebraic matrix equations and PDE. Admittable solutions depend on arbitrary functions of nn variables.Comment: 6 page
    • 

    corecore